On the Local Convergence of Semismooth Newton Methods for Linear and Nonlinear Second-Order Cone Programs Without Strict Complementarity
نویسندگان
چکیده
The optimality conditions of a nonlinear second-order cone program can be reformulated as a nonsmooth system of equations using a projection mapping. This allows the application of nonsmooth Newton methods for the solution of the nonlinear second-order cone program. Conditions for the local quadratic convergence of these nonsmooth Newton methods are investigated. Related conditions are also given for the special case of a linear second-order cone program. An interesting and important feature of these conditions is that they do not require strict complementarity of the solution. Some numerical results are included in order to illustrate the theoretical considerations.
منابع مشابه
Semismooth Methods for Linear and Nonlinear Second-order Cone Programs
The optimality conditions of a nonlinear second-order cone program can be reformulated as a nonsmooth system of equations using a projection mapping. This allows the application of nonsmooth Newton methods for the solution of the nonlinear second-order cone program. Conditions for the local quadratic convergence of these nonsmooth Newton methods are investigated. Related conditions are also giv...
متن کاملA least-square semismooth Newton method for the second-order cone complementarity problem
We present a nonlinear least-square formulation for the second-order cone complementarity problem based on the Fischer-Burmeister (FB) function and the plus function. The formulation has twofold advantages. Firstly, the operator involved in the overdetermined system of equations inherits the favorable properties of the FB function for local convergence, for example, the (strong) semismoothness....
متن کاملClarke Generalized Jacobian of the Projection onto Symmetric Cones and Its Applications
In this paper, we give an exact expression for Clarke generalized Jacobian of the projection onto symmetric cones, which is linked to rank-1 matrices. As an application, we employ the projection operator to design a semismooth Newton algorithm for solving nonlinear symmetric cone programs. The algorithm is proved to be locally quadratically convergent without assuming strict complementarity of ...
متن کاملQuadratic Convergence of a Nonsmooth Newton-Type Method for Semidefinite Programs Without Strict Complementarity
We consider a Newton-type method for the solution of semidefinite programs. This Newton-type method is based on a semismooth reformulation of the semidefinite program as a nonsmooth system of equations. We establish local quadratic convergence of this method under a linear independence assumption and a slightly modified nondegeneracy condition. In contrast to previous investigations, however, t...
متن کاملA semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions
In this paper, we present a detailed investigation for the properties of a oneparametric class of SOC complementarity functions, which include the globally Lipschitz continuity, strong semismoothness, and the characterization of the B-subdifferential at a general point. Moreover, for the merit functions induced by them for the second-order cone complementarity problem (SOCCP), we provide a cond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 20 شماره
صفحات -
تاریخ انتشار 2009